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Abstract
Within the framework of supersymmetric quantum mechanics, we study the
simplified version of the potential algebra of the shape invariance condition
in k steps, where k is an arbitrary positive integer. The associated potential
algebra is found to be equivalent to the generalized deformed oscillator algebra
that has a built-in Zk-grading structure. The algebraic realization of the shape
invariance condition in k steps is therefore formulated by the method of the Zk-
graded deformed oscillator. Based on this formulation, we explicitly construct
the general algebraic properties for shape invariant potentials in k steps, in
which the parameters of partner potentials are related to each other by the
translation a1 = a0 + δ. The obtained results include the cyclic shape invariant
potentials of period k as a special case.

PACS numbers: 03.65.−w, 03.65.Fd, 11.30.Pb

1. Introduction

Supersymmetry (SUSY) is the symmetry between bosonic and fermionic degrees of freedom.
The idea of SUSY was initially introduced to solve the hierarchy problem in grand unified
theories. SUSY is not an exact symmetry of nature; therefore, it has to be broken at some
stages. It is however difficult to determine whether SUSY is broken or not in supersymmetric
quantum field theories. Supersymmetric quantum mechanics (SUSYQM) as a result becomes
a testing ground to understand non-perturbative SUSY breaking [1, 2]. For a review of
SUSYQM, refer to [3–5] and references therein.

In SUSYQM, one constructs the SUSY partner Hamiltonian, starting from a given one-
dimensional Hamiltonian by the method of factorization [6]. The process can be used
successively to generate an entire hierarchy of the isospectral Hamiltonians. Let us be more
specific. Two potentials V (−)(x, a0) and V (+)(x, a0) are said to be SUSY partner potentials if
they are related to the superpotential W(x, a0) by

V (±)(x, a0) = W 2(x, a0) ± W ′(x, a0), (1)
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where W ′(x, a0) ≡ d
dx

W(x, a0) and a0 is a set of parameters. In units of h̄ = 2m = 1, the
associated SUSY partner Hamiltonians H(−)(x, a0) and H(+)(x, a0) have the standard forms

H(±)(x, a0) = − d2

dx2
+ V (±)(x, a0). (2)

In the case of unbroken SUSY, a special property regarding SUSYQM is that except
for a zero-energy eigenstate, the SUSY partner Hamiltonians H(±)(x, a0) are found to
be exactly isospectral. That is, if we know all the eigenstates of H(−)(x, a0), we can
construct all the eigenstates of H(+)(x, a0), and vice versa, except for the zero-energy
ground-state eigenfunction. Furthermore, the existence of the zero-energy state is completely
determined by the asymptotic behavior of the superpotential W(x, a0). If we denote
W(x → ±∞, a0) = W± �= 0,1 then sgn(W+) = −sgn(W−) indicates good SUSY, whereas
sgn(W+) = sgn(W−) signifies the breaking of SUSY. As a result, the Witten index acquires
the topological expression: � = 1

2 [sgn(W+) − sgn(W−)] [4]. Here, sgn(W±) is the sign of
the asymptotic value W±, respectively.

SUSYQM has been shown to provide a key ingredient to explore exactly solvable
potentials for the Schrödinger equation in nonrelativistic quantum mechanics. In this respect,
the concept of the shape invariance condition [7] in the formalism of SUSYQM becomes
very critical, because it leads immediately to an integrability condition to the problem. What
we mean by shape invariance is that the pair of partner potentials V (±)(x, a0) defined in
equation (1) are similar in shape but differ only up to a change of parameters and additive
constants. Mathematically, the condition reads2

V (+)(x, a0) = V (−)(x, a1) + R(a0), (3)

where a1 = f (a0) is a function of a0 and the remainder R(a0) is independent of x. Now by
equation (3), the entire spectrum of eigenenergies for the initial Hamiltonian H(−)(x, a0) (2)
can be obtained algebraically as (n = 1, 2, 3, . . .) [7, 8]

E
(−)
0 = 0, E(−)

n =
n−1∑
i=0

R(ai). (4)

Here, we assume that the superpotential W(x, a0) is constructed in such a way that the
Hamiltonian H(−)(x, a0) possesses the unique zero-energy ground state.

Many interesting classes of solvable shape invariant potentials in one step that retain SUSY
have been reported and discussed, including all the analytically solvable potentials known in
the context of nonrelativistic quantum mechanics. In the SUSYQM literature, there are four
typical classes: (i) the translation class [9, 10], where the parameters a0 and a1 are related by
translation a1 = a0 + δ; (ii) the scaling class [11, 12], where the parameters are related by
a1 = qa0 and 0 < q < 1; (iii) the cyclic class [13], where a0 = ap and f (a0) = a1 = ap+1,
for p = 2, 3, . . .; and (iv) the ‘exotic’ class [11], where a1 = qa

p

0 and its generalization
a1 = qa0/(1 + pa0), for 0 < q < 1 and p = 2, 3, . . . .3

To obtain more solvable shape invariant potentials, the concept of shape invariance can
be extended to two and even multi-steps [11]. Based on this method, various shape invariant
potentials in two or higher steps have been obtained [13–15]. The extension to shape invariance
in multi-steps is rather straightforward. So, let us consider the case of the shape invariance

1 If one or both values of W± vanish, more information about the asymptotic behavior of W(x, a0) is needed to
determine whether SUSY is broken [4].
2 Since the partner potentials V (−)(x, a1) and V (+)(x, a0) are related to each other by one relation, equation (3) is
thus called the one-step shape invariance condition.
3 Strictly speaking, these four classes can be transformed to one another by suitable reparameterizations. For
example, the scaling form a1 = qa0 can be rearranged into the translation form a′

1 = a′
0 + δ by taking logarithms.
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condition in k steps with unbroken SUSY, where k is an arbitrary positive integer. We are
given k superpotentials, denoted by Ws(x, a0) with s = 0, 1, . . . , k − 1, whose asymptotic
values are assumed to satisfy the conditions sgn(W0+) = sgn(W1+) = · · · = sgn(W(k−1)+)

and sgn(Ws+) = −sgn(Ws−) for all these superpotentials. Further, the respective partner
potentials V (±)

s (x, a0), defined in equation (1), are chosen to obey the following k relations:

V
(+)

0 (x, a0) = V
(−)

1 (x, a0) + R0(a0),

V
(+)

1 (x, a0) = V
(−)

2 (x, a0) + R1(a0),
(5)

· · · = · · ·
V

(+)
k−1(x, a0) = V

(−)
0 (x, a1) + Rk−1(a0),

where the k arbitrary remainders Rs(a0) are independent of x. By shape invariance condition
in k steps, we mean that the SUSY partner potentials V

(−)
0 (x, a1) and V

(+)
0 (x, a0) at this time

are related to each other by the above k relations.
It is readily shown that from equation (5) the energy eigenvalues for the initial potential

V
(−)

0 (x, a0) can be algebraically determined. These eigenvalues are found as

E
(−)
nk+s =

n−1∑
m=0

k−1∑
t=0

Rt(am) +
s−1∑
t=0

Rt(an), (6)

where E
(−)
0 = 0, s = 0, 1, . . . , k − 1 and n = 0, 1, 2, . . . . Note that we use the convention

for the summation
∑−1

t=0 = 0.
The purpose of the present paper is to explore the possible algebraic structures of the shape

invariance condition in k steps, as described by equations (5) and (6). The general solution
to this problem remains unsolved. However, as we shall show, if extra relations among the
k unrelated superpotentials Ws(x, a0) and among the k unrelated remainders Rs(a0) can be
separately introduced, the underlying potential algebra will be simplified. This simplified
version of the potential algebra is found to be equivalent to the so-called generalized deformed
oscillator algebra with a built-in Zk-grading structure. Therefore, the algebra of the shape
invariance condition in k steps can be studied in the context of the Zk-graded generalized
deformed oscillator [16, 17]. For the purpose of illustration, we explicitly work out the
detailed algebraic properties of shape invariant potentials in general k steps, in which the
parameters of partner potentials are related to each other by a translational change a1 = a0 + δ.
These results include the cyclic shape invariant potentials of period k as a particular case
[13, 18, 19]. In addition, the results also contain two new types of shape invariant potentials
in k steps: the Pöschl–Teller I & II potentials in k steps that generalize the ordinary shape
invariant Pöschl–Teller I & II potentials from one step to k steps, respectively.

The paper is organized as follows. In section 2, by imposing the extra relations we
establish the simplified version of potential algebra of shape invariance condition in k steps.
In section 3, we review and modify the basic definitions and notations of the generalized
deformed oscillator with a built-in Zk-grading structure. In section 4, we explicitly work out
the algebraic properties of translational shape invariant potentials in k steps, based on the
Zk-graded deformed oscillator algebra. Finally, section 5 contains a discussion.

2. Algebraic shape invariance in k steps

It is known that the shape invariance condition in one step (3) possesses what is generally
referred to as a potential algebra [20, 21]. That is, the one-step shape invariant potentials

3
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have an underlying algebraic structure, and thus can be studied by group theoretical methods
[22, 23]. As a result, the energy eigenvalues of the one-step shape invariant Hamiltonian can
be determined by purely algebraic means.

With some restriction, the concept of potential algebra can also be applied to the shape
invariance condition in more than one step. Recently, a simplified version of potential algebra
for the shape invariance condition in two steps has been constructed and discussed by the
author [24]. It is found that the corresponding simplified potential algebra is similar to
that of shape invariance in one step, and is based only on the three angular-momentum-
like generators. It is also suggested that the same technique can be further extended to the
shape invariance condition in more than two steps. In this section, we shall continue to
investigate the general algebraic properties for the shape invariance condition in multi-steps
in a concrete and consistent way.

To begin with, let us consider in equation (5) the substitution of parameters a0 → α(N0)

and for the general case the substitution am → α(N0 − m), where N0 is an arbitrary positive
integer and m = 0, 1, 2, . . . . The precise form of the function α(N0) is to be determined
by requiring that the change α(N0) → α(N0 − 1) correspond to the change of parameters
a0 → a1. In terms of the k superpotentials, Ws(x, α(N0)) with s = 0, 1, . . . , k − 1, the
corresponding shape invariance condition in k steps (5) can be expressed as

W 2
0 (α(N0)) + W ′

0(α(N0)) = W 2
1 (α(N0)) − W ′

1(α(N0)) + R0(α(N0)),

W 2
1 (α(N0)) + W ′

1(α(N0)) = W 2
2 (α(N0)) − W ′

2(α(N0)) + R1(α(N0)),
(7)

· · · = · · ·
W 2

k−1(α(N0)) + W ′
k−1(α(N0)) = W 2

0 (α(N0 − 1)) − W ′
0(α(N0 − 1)) + Rk−1(α(N0)).

To simplify the notation, we have suppressed the x-dependence in the superpotentials
Ws(x, α(N0)) in equation (7). These k superpotentials are quite arbitrary at this stage.
Without further clues, obviously it is very difficult to determine the underlying potential
algebra described by the above k relations.

To solve this problem, we restrict ourselves to a particular subset of the shape invariance
condition in k steps, instead. The subset is obtained by imposing extra relations on the
k superpotentials and on the k remainders. This will result in a simplified version of
the corresponding potential algebra. Explicitly, these relations are based on the following
particular identification:

Ws(x, α(N0)) ≡ W
(
x, α

(
N0 − s

k

))
, Rs(α(N0)) ≡ R

(
α

(
N0 − s

k

))
. (8)

With the help of equation (8), the k seemly unrelated relations in (7) can be cast into a single
and compact equation for the unified superpotential W(x, α(N0)) and the unified remainder
R(α(N0)) as

W 2
(
x, α

(
N0 − s

k

))
+ W ′

(
x, α

(
N0 − s

k

))
= W 2

(
x, α

(
N0 − s + 1

k

))

−W ′
(

x, α

(
N0 − s + 1

k

))
+ R

(
α

(
N0 − s

k

))
. (9)

We note that the k relations in equation (7) can be easily reproduced from equation (9) by
letting, one at a time, s = 0, 1, . . . , k − 1, respectively.

Equation (9) actually represents a constraint equation for the superpotential W(x, α(N0))

when the parameter N0 is changed by − 1
k

as we go from the first superpotential to the second
one, third one, fourth one, and so on. From the viewpoint of quantum mechanics, this change
of parameter, i.e. N0 → N0 − 1

k
, can be formally accomplished by the action of the raising and
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lowering operators of angular momentum [22], or equivalently, by the action of the creation
and annihilation operators of a simple harmonic oscillator. Here, we shall adopt the notion of
the simple harmonic oscillator in the description and treatment of our problem. With this in
mind, we first define an operator N that is analogous to the number operator of the harmonic
oscillator by

N ≡ 1

i

∂

∂φ
, (10)

and designate the parameter N0 as the eigenvalue of the number operator N acting on the
eigenstate |N0〉, that is N |N0〉 = N0|N0〉. Now, it is natural to think that the unified
superpotential function lives in a two-dimensional space spanned by the coordinates x and φ,
and the eigenvalue of N is assigned to the labeling parameter. In this way, the set of k relations
in equation (7) can be immediately generated when we project this operator equation

W 2

(
x, α

(
N +

1

k

))
+ W ′

(
x, α

(
N +

1

k

))

= W 2(x, α(N )) − W ′(x, α(N )) + R

(
α

(
N +

1

k

))
(11)

into the eigenstates
∣∣N0 − s+1

k

〉
, for s = 0, 1, . . . , k − 1, respectively.

Next, we construct the annihilation and creation operators of the associated harmonic
oscillator. The annihilation operator A and creation operator A† = (A)† are built using the
unified superpotential W(x, α(N )) as

A = e−iφ/k

[
∂

∂x
+ W(x, α(N ))

]
, A† =

[
− ∂

∂x
+ W(x, α(N ))

]
eiφ/k. (12)

Explicit computations then show that the simplified potential algebra of shape invariance in k
steps, based on the set of generators {I,A†,A,N }, is indeed closed and generically nonlinear.
Their commutation relations are described by

[A,N ] = 1

k
A, [A†,N ] = −1

k
A†, [A†,A] = −R

(
α

(
N +

1

k

))
, (13)

where we have used equation (11). In this way, the operator A†(A), as desired, changes the
eigenvalues of N by +(−) 1

k
, respectively. We mention here that the above potential algebra

(13) based on the set of generators {I,A†,A,N } is similar to that of shape invariance condition
in one step [20–23]. Moreover, based on our formulation, this algebra is also equivalent to the
so-called generalized deformed oscillator algebra, which has been extensively studied [26–29].
In other words, the particular identification (8) not only reduces the shape invariance condition
effectively from k steps to one step, but also simplifies the associated potential algebra (7) to
the well-established deformed oscillator algebra.

It is noted that the configuration space for the variable φ is [0, 2πk] due to the
requirement that the operatorsA andA† in equation (12) remain intact under the transformation
φ → φ + 2πk. However, the configuration space for the variable x is not entirely specified
since it depends on the singular property of the superpotential W(x, α(N )) at the origin x = 0.
For instance, if the singularity is not present or if it is the so-called ‘soft’ singularity [25] that
can be properly regularized [14], the configuration space for x can be defined on either x ∈ R

or x ∈ [−l, l], where l is a constant. Otherwise, it can be only defined on either x ∈ R
+ or

x ∈ [0, l]. Here, based on a similar study for the shape invariant potentials in two steps [24],
we shall assume that the singularity present in the unified superpotential W(x, α(N )) is at
most ‘soft’.

5
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The representation of the simplified potential algebra (13) can be obtained as follows. We
consider the simultaneous eigenstates, denoted by

∣∣ n
k

〉
for n = 0, 1, 2, . . . , of the mutually

commuting operators A†A and N , whose eigenvalue equations are given by

A†A
∣∣∣n
k

〉
= F

(
α

(n

k

)) ∣∣∣n
k

〉
, N

∣∣∣n
k

〉
= n

k

∣∣∣n
k

〉
, (14)

respectively. Here, we shall callF
(
α

(
n
k

))
the structure function as suggested in the generalized

deformed oscillator algebra. Both equations together imply the action of ladder-type operators
A and A† on the eigenstate

∣∣ n
k

〉
as

A
∣∣∣n
k

〉
=

√
F

(
α

(n

k

)) ∣∣∣∣n − 1

k

〉
, A†

∣∣∣n
k

〉
=

√
F

(
α

(
n + 1

k

)) ∣∣∣∣n + 1

k

〉
, (15)

where without loss of generality the structure function F
(
α

(
n
k

))
is chosen to be real and

positive. If the spectrum of the operators A†A exhibits a lowest-weight eigenstate, that is
A|0〉 = 0, we then choose the condition F(α(0)) = 0 to be satisfied.

The energy eigenvalues of the initial Hamiltonian H
(−)
0 (x, a0) = H

(−)
0 (x, α(N0)) can be

expressed purely in terms of the structure function F
(
α

(
n
k

))
. We determine this relation by

simply projecting the third commutator of equation (13) on the eigenstate
∣∣N0 − s+1

k

〉
, and

obtain

F
(

α

(
N0 − s + 1

k

))
− F

(
α

(
N0 − s

k

))
= −R

(
α

(
N0 − s

k

))
. (16)

Then applying equation (16) recursively, we establish from equation (6) the eigenenergies of
the initial Hamiltonian H

(−)
0 (x, α(N0)) (2) as

E(−)
n =

n−1∑
s=0

R
(
α

(
N0 − s

k

))
= F(α(N0)) − F

(
α

(
N0 − n

k

))
, (17)

where n = 0, 1, 2, . . . . Equation (17) describes the energy spectrum of the simplified shape
invariance condition in k steps, as compared with the more complicated energy spectrum given
in equation (6).

In the present research, we are primarily interested in the algebraic structures of shape
invariant potentials in k steps, in which the parameters of partner potentials are related to
each other by the translation: a1 = a0 + δ. The analytical properties of such translational
shape invariant potentials in k steps are little known, except for those in two steps [14, 15].
Nevertheless, for the purpose of obtaining their algebraic properties, we choose the k
remainders Rs(am) in equation (5) having the following particular forms (m = 0, 1, 2, . . .) :

Rs(am) = σs + amωs, (18)

where σs and ωs , for s = 0, 1, . . . , k − 1, are arbitrary constants. In fact, the choice for the
k-step remainders is not unique. There is another possibility for the remainders, which results
in a quadratic polynomial of the parameter am [15]. However, we will not pursue this more
difficult problem here.

Now, as suggested by the identification (8), the simplified potential algebra associated
with shape invariance in k steps can be established if we identify the k unrelated remainders
in equation (18) as

Rs(am) = Rs(α(N0 − m)) ≡ R
(
α

(
N0 − m − s

k

))
. (19)

6
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By comparing both equations (18) and (19), we immediately find that the unified remainder
R

(
α

(
N0 − m − s

k

))
, having the required functional property, can be determined if the k pairs

of constants (σs, ωs) are related to one another by
σs

ωs

= σ0

ω0
+

s

k
δ. (20)

In this way, the unified remainder takes the form

R
(
α

(
N0 − m − s

k

))
=

[
σ0

ω0
+ a0 + N0δ −

(
N0 − m − s

k

)
δ

]
ωs, (21)

where the translational change of the parameters am = a0 + mδ is implied.
Two remarks are in order at this stage. (i) Inspecting the energy spectrum of the initial

Hamiltonian H
(−)
0 (x, α(N0)) in equation (17), we learn that the remainder R

(
α

(
N0 − s

k

))
is nothing but the energy gap between two adjacent eigenstates. Therefore, we must set
R

(
α

(
N0 − s

k

))
> 0, in order to prevent energy level crossing. When letting

(
σ0
ω0

+ a0
)
, ωs > 0

and examining the explicit form of the unified remainder (21), we conclude that the system
will possess an infinite number of bound states if δ � 0. Otherwise, it only contains a finite
number of bound states for δ < 0 because equation (21) may become negative for a large
enough value of

(
m + s

k

)
. (ii) The particular form of the unified remainder in equation (21)

actually imposes an extra Zk-grading structure into the energy spectrum of shape invariant
potentials in k steps. This can be easily checked by noting that the unified remainder in
equation (21) is decomposed into k distinct combinations specified by ωs , for each different
choice of s(s = 0, 1, . . . , k − 1). Because of the choice of the remainders (18), the simplified
potential algebra of shape invariance in k steps is further found to be equivalent to the
generalized deformed oscillator algebra that has a built-in Zk-grading structure. The algebraic
properties of shape invariant potentials in k steps can therefore be formulated by the method of
Zk-graded generalized deformed oscillator. The algebra of the Zk-graded deformed oscillator
is reviewed and modified in the next section.

3. Zk-graded generalized deformed oscillator

For the purpose of establishing the definitions and notations, we shall begin with a brief
review on the basic principles of the generalized deformed oscillator algebra. Then we
introduce the generalized deformed oscillator algebra with a Zk-grading structure. In order
for our presentation to be consistent with the formulations already described in the preceding
section, we will make some modifications on the Zk-graded deformed oscillator algebra.

3.1. Generalized deformed oscillator algebra

Deformed oscillators have been proposed and studied in many different deformation schemes
[26–29]. All deformed oscillators can be unified into a common mathematical framework in
the formulation of the so-called generalized deformed oscillator [26]. A generalized deformed
oscillator is defined by a nonlinear algebra generated by the operators I, a, a†, and N that fulfil
the Hermiticity conditions (a)† = a†, N † = N , and the relations

[a,N ] = a, [a†, N] = −a†, a†a = F(N), aa† = F(N + 1), (22)

where N is the number operator and the Hermitian nonnegative function F(N) is the structure
function. In order to have the Fock representation, F(N) should satisfy the condition
F(0) = 0 and F(n) > 0, for n = 1, 2, 3, . . . . Technically, the structure function F(N) is the
characteristic of the deformation scheme. Different structure functions correspond to different

7
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deformed oscillators. Nevertheless, all the deformed oscillators can be accommodated within
the framework as given in equation (22).

To realize the algebra of the generalized deformed oscillator, it is natural to introduce the
Fock space of eigenstates of the number operator N, which have the property N |n〉 = n |n〉
and 〈n|m〉 = δn,m (for n,m = 0, 1, 2, . . .). If the ground state satisfies the relation a|0〉 = 0,
the complete number eigenstates are obtained by successive application of the operator a† as

|n〉 = 1√
F(n)!

(a†)n|0〉, (23)

where n = 0, 1, . . . , d − 1 and d may be finite or infinite. The normalization coefficients
F(n)! are given by

F(n)! =
n∏

k=1

F(k), F (0)! = 1. (24)

In this sense, the operators a and a† are the annihilation and creation operators of this deformed
oscillator algebra,

a|n〉 =
√

F(n)|n − 1〉, a†|n〉 =
√

F(n + 1)|n + 1〉. (25)

3.2. Zk-graded deformed oscillator algebra

We introduce the Zk-graded deformed oscillator algebra that possesses a built-in Zk-grading
structure in the subsection. In the literature, there are various versions of the Zk-extended
deformed oscillator algebra that have been discussed [16, 17]. Here, we make some
modifications on this Zk-extended algebra for the purpose of incorporating the algebraic
properties of the k-step shape invariance condition.

To be more specific, the algebra of the Zk-graded generalized deformed oscillator is defined
by the operators I, a, a†, N and T that fulfil the Hermiticity conditions (a)† = a†, N † = N ,
T † = T −1 and the following relations:

[a,N ] = 1

k
a, [a†, N ] = −1

k
a†, a†a = F(N), aa† = F

(
N +

1

k

)
, (26)

T k = I, [N, T ] = 0 = [N, T †], a†T = e−i2π/kT a†, T †a = aT † ei2π/k, (27)

where k = 1, 2, 3, . . . . For the special value k = 1, it is readily known that the algebra
defined in equations (26) and (27) reduces to the generalized deformed oscillator algebra (22).
In addition, we note that in defining the Zk-graded deformed oscillator algebra above, the
creation operator a† is designated to increase the eigenvalue of the number operator N by
units of 1

k
, not by unity as in the conventional Zk-extended deformed oscillator. Similarly, the

annihilation operator a decreases it by 1
k
.

The grading operator T in equation (27) is the generator of the cyclic group of order
k, Zk = {1, T , T 2, . . . , T k−1|T k = 1}. There can be many different realizations for such a
operator, but here we choose the one in which the grading operator is easily realized in terms
of the number operator N as

T = e2π iN . (28)

The grading operator T has k distinct eigenvalues qs in which q is the sth root of unity and
s = 0, 1, 2, . . . , k − 1. Therefore, the Zk-grading structure of the Fock space H can be

8
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distinguished by the eigenvalues of the grading operator T, for which the corresponding Fock
subspace of eigenvalue qs is denoted by

Hs :
{∣∣∣n +

s

k

〉 ∣∣∣n = 0, 1, 2, . . .
}

. (29)

The entire Fock space is consequently the direct sum of each individual Fock subspace as
given by H = ∑k−1

s=0 ⊕Hs .
We have shown that the Fock space of the Zk-graded deformed oscillator consists of k

distinct Fock subspaces, which can be specified by the grading operator T. In fact, the grading
structure of the Fock space can also be naturally formulated by the projection operators that,
by construction, project on these distinct subspaces. Explicitly, the projection operators are
expressed in terms of the grading operator T as (for s = 0, 1, . . . , k − 1)


s = 1

k

k−1∑
t=0

e−2π its/kT t = 1

k

k−1∑
t=0

e2π it (N−s/k),

k−1∑
s=0


s = I. (30)

At this stage, we are able to restate the algebra of the Zk-graded generalized deformed
oscillator, using the projection operator 
s not the grading one T: the algebra of the Zk-graded
deformed oscillator is generated by the set of operators I, a, a†, N and 
s , that fulfil the
Hermiticity conditions (a)† = a†, N † = N , 


†
s = 
s and the following relations:

[a,N ] = 1

k
a, [a†, N ] = −1

k
a†, a†a = F(N), aa† = F

(
N +

1

k

)
, (31)

[N,
s] = 0, 
s
t = δs,t , a†
s = 
s+1a
†, a
s = 
s−1a, (32)

where s, t = 0, 1, . . . , k − 1. The convention for the projection operators has been used:

t = 
s if t − s = 0 mod k.

To establish the complete Fock space representation for the Zk-graded deformed oscillator,
let us again use the creation and annihilation operators a† and a, and take the eigenstates of
the number operator N, which fulfil the properties N

∣∣ n
k

〉 = n
k

∣∣ n
k

〉
and

〈
n
k
|m

k

〉 = δn,m, for
n,m = 0, 1, 2, . . . . The ground state is defined by the simultaneous eigenstate of the operators
N and a†a with both vanishing eigenvalues, and in addition satisfies the relation a|0〉 = 0.
The complete Fock-space eigenstates are constructed by operator a† as∣∣∣n

k

〉
= 1√

F
(

n
k

)
!
(a†)n|0〉, (33)

where the normalization coefficients are

F

(
n

k

)
! =

n∏
m=1

F

(
m

k

)
, F (0)! = 1. (34)

In this way, the eigenvalue equations for the operators N and 
t are

N

∣∣∣n +
s

k

〉
=

(
n +

s

k

) ∣∣∣n +
s

k

〉
, (35)


t

∣∣∣n +
s

k

〉
= δt,s

∣∣∣n +
s

k

〉
, (36)

where s, t = 0, 1, . . . , k − 1. Moreover, the operators a and a† act on these eigenstates,
rendering

a

∣∣∣n +
s

k

〉
=

√
F

(
n +

s

k

) ∣∣∣∣n +
s − 1

k

〉
, (37)

9
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a†
∣∣∣n +

s

k

〉
=

√
F

(
n +

s + 1

k

) ∣∣∣∣n +
s + 1

k

〉
. (38)

Finally, because of the encoded Zk-grading structure, the corresponding structure function
F(N), expressed in terms of the projection operators 
s , will have the following form:

F(N) = f (N) +
k−1∑
s=0

gs(N)
s. (39)

Here, f (N) and gs(N) are analytical functions of N.

4. Algebraic structures of translational shape invariant potentials

To illustrate the simplified potential algebra developed in section 2, we shall investigate
algebraic structures for the shape invariant potentials in k steps, in which the parameters of
partner potentials are related to each other by a translation change: am = am−1 +δ = a0 +mδ. The
quantity δ is a constant and m = 0, 1, 2, . . . . The analysis will be based on the formalism of
the Zk-graded deformed oscillator reviewed and modified in section 3. The relevant algebraic
quantities for the shape invariant potentials in the first few number of k steps will be explicitly
constructed. After obtaining enough information for these potentials, the general algebraic
results for the shape invariant potentials in arbitrary k steps can be deduced.

Before presenting the details, we mention here some important relations that are used
in the upcoming calculations. We note that the unified remainder given in equation (21) can
be expressed in terms of the number operator N and projection operators 
s . It takes the
compact form as

R(α(N )) = (C + (N0 − N )δ)

k−1∑
s=0

ωs
s, (40)

where C is a short-hand notation,

C = σ0

ω0
+ a0. (41)

In the same vein, using the operators N , 
s , and equation (39), we are able to write the
structure function F(α(N )) of shape invariance condition in k steps defined in equation (14)
as

F(α(N )) = f (N ) +
k−1∑
s=0

gs(N )
s, (42)

where f (N ) and gs(N ) are functions of N . All of them are determined by requiring
equation (42) to satisfy the remainder-structure function relation (16), that is

F
(

α

(
N − 1

k

))
− F(α(N )) = −R(α(N )). (43)

Furthermore, we introduce two quantities that will be useful in the later presentations.
The first one is the analogous Kronecker delta for the cyclic group of order k. We use the
symbol �s,t that is defined by

�s,t =
{

1, for s = t mod k,

0, for s �= t mod k.
(44)

The second one is the quantity �k given by the summation

�k ≡
k−1∑
s=0

ωs. (45)

10
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4.1. Shape invariance in two steps

Let us begin with the simplest example, which is the shape invariance condition in two steps.
For k = 2, the grading operator exp(2π iN ) simply reduces to the usual Klein operator.
The corresponding projection operators 
0 = 1

2 (I + (−1)2N ) and 
1 = 1
2 (I − (−1)2N )

project upon the even subspace H0 = {|N0 − n〉|n = 0, 1, 2, . . .} and odd subspace
H1 = {∣∣N0 − n − 1

2

〉|n = 0, 1, 2, . . .
}

of the Z2-graded Fock space H, respectively. In this
sense, the Z2-graded deformed oscillator algebra is similar to the Calogero–Vasiliev oscillator
algebra [30]. Moreover, it is also equivalent to the so-called R-deformed Heisenberg algebra
[27] which has found many interesting applications recently [31].

When applying the operator equation (40) on the two eigenstates |N0〉 and
∣∣N0 − 1

2

〉
, we

obtain the first two remainders for the initial Hamiltonian H
(−)
0 (x, α(N0)) as R(α(N0)) = Cω0

and R
(
α

(
N0− 1

2

)) = (
C+ 1

2δ
)
ω1, respectively. The values of R

(
α

(
N0− 1

2n
))

for other number
eigenstates can be obtained in the similar manner. Using these results, the corresponding
structure function F(α(N )) for the shape invariant potentials in two steps can be determined
by equation (43). After some calculations, we arrive at

F
(

α

(
N0 − 1

2
n

))
= C0 − 1

2
�2

(
C +

1

4
(n − 1)δ

)
n

+
1∑

s=0

((
C +

1

4
(2n − 1)δ

)
cs − δds

)
�s,n, (46)

where n = 0, 1, 2, . . . and C0 is an arbitrary constant to render F
(
α

(
N0 − n

2

))
positive definite.

Due to the presence of �s,n (44), only one term in the summation is singled out which fulfils
the condition n − s = 0 mod 2. Moreover, the constants cs and ds (s = 0, 1) are given by

c0 = −c1 = 1
4 (ω0 − ω1), d0 = d1 = 1

8 (ω0 + ω1). (47)

The energy spectrum (17) of the initial Hamiltonian H
(−)
0 (x, α(N0)) is therefore

E(−)
n = F(α(N0)) − F

(
α

(
N0 − 1

2n
))

. (48)

We note that a similar algebraic result for shape invariant potentials in two steps has been
constructed using a different approach [24].

For the purpose of completeness, we review the relevant parts for the shape invariant
potentials in two steps. The detailed analytical properties can be found in [14, 15]. For
brevity, the unified superpotential takes the simple form

W(x, α(N )) =
(
C +

(
N0 − N − 1

4

)
δ

)
g(x) +

1

2g(x)

1∑
s=0

cs
s, (49)

where the function g(x) is determined by the first-order differential equation

g′(x) − δ

2
g2(x) = 1

4
(ω0 + ω1). (50)

Consequently, the shape invariant potentials in two steps are: (i) for δ = 0, the singular
harmonic oscillator potential, (ii) for δ > 0, the singular Pöschl–Teller I potential and
(iii) for δ < 0, the singular Pöschl–Teller II potential. For each of these three potentials,
the superpotential is continuous with well-defined derivatives everywhere, except at the origin
x = 0, where it is singular and has an infinite discontinuity. A regularization that preserves
shape invariance needs to be introduced, hence giving rise to the corresponding regularized
potential a Dirac delta-function singularity at the origin [14].

11
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4.2. Shape invariance in three steps

The next allowed value is k = 3, that is the potential algebra of the shape invariance condition
in three steps. The grading operator is again denoted by exp(2π iN ). The Z3-graded Fock
space is constructed by the direct sum: H = ∑2

s=0 ⊕Hs . The projection operators are given
by


0 = 1
3 (1 + 2 cos 2πN ),


1 = 1
3 (1 − cos 2πN −

√
3 sin 2πN ), (51)


2 = 1
3 (1 − cos 2πN +

√
3 sin 2πN ),

that project on the Fock subspace Hs = {∣∣N0 − n − s
3

〉|n = 0, 1, 2, . . .
}
, for s = 0, 1, and 2,

respectively.
It is readily checked that when acting equation (40) on the first three eigenstates |N0〉,∣∣N0 − 1

3

〉
and

∣∣N0 − 2
3

〉
, we obtain R(α(N0)) = Cω0, R

(
α

(
N0 − 1

3

)) = (
C + 1

3δ
)
ω1 and

R
(
α

(
N0 − 2

3

)) = (
C + 2

3δ
)
ω2, respectively. Other results can be similarly obtained. By

equation (43), we establish the corresponding structure function after some calculations
(n = 0, 1, 2, . . .) :

F
(

α

(
N0 − 1

3
n

))
= C0 − 1

3
�3

(
C +

1

6
(n − 1)δ

)
n

+
2∑

s=0

((
C +

1

6
(2n − 1)δ

)
cs − δds

)
�s,n, (52)

where, as in the previous case, only one term is singled out in the summation that satisfies
the condition n − s = 0 mod 3. The constant C0 is chosen to make the associated structure
function positive definite. The constants cs and ds for s = 0, 1, 2 in equation (52) are found to
be

c0 = 1
3 (ω0 − ω2), d0 = 1

18 (2ω0 + ω1 + 2ω2),

c1 = 1
3 (ω1 − ω0), d1 = 1

18 (2ω1 + ω2 + 2ω0), (53)

c2 = 1
3 (ω2 − ω1), d2 = 1

18 (2ω2 + ω0 + 2ω1).

The energy spectrum for the shape invariant potentials in three steps can be algebraically
determined from equations (52) and (17), in which k is replaced by 3.

4.3. Shape invariance in four steps

The grading operator for shape invariant potentials is exp(2π iN ) once more. The Z4-graded
Fock space of the shape invariance condition in four steps is denoted by H = ∑3

s=0 ⊕Hs . The
projection operators are


0 = 1
4 (1 + 2 cos 2πN + cos 4πN ),


1 = 1
4 (1 − 2 sin 2πN − cos 4πN ),

(54)

2 = 1

4 (1 − 2 cos 2πN + cos 4πN ),


3 = 1
4 (1 + 2 sin 2πN − cos 4πN ),

projecting on the Fock subspace Hs = {∣∣N0 − n − s
4

〉|n = 0, 1, 2, . . .
}
, for s = 0, 1, 2, and

3, respectively. When acting equation (40) on the first four eigenstates of the system |N0〉,∣∣N0 − 1
4

〉
,
∣∣N0 − 2

4

〉
and

∣∣N0 − 3
4

〉
, we find that R(α(N0)) = Cω0, R

(
α

(
N0 − 1

4

)) = (
C + 1

4δ
)
ω1,

12
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R
(
α

(
N0 − 2

4

)) = (
C + 2

4δ
)
ω2 and R

(
α

(
N0 − 3

4

)) = (
C + 3

4δ
)
ω3, respectively. Other values of

R
(
α

(
N0 − 1

4n
))

can be similarly constructed. From equation (43), the structure function can
be determined:

F
(

α

(
N0 − 1

4
n

))
= C0 − 1

4
�4

(
C +

1

8
(n − 1)δ

)
n

+
3∑

s=0

((
C +

1

8
(2n − 1)δ

)
cs − δds

)
�s,n, (55)

where n = 0, 1, 2, . . . and C0 is chosen to set the structure function positive definite. In the
above summation, only the term satisfying the condition s = n mod 4 contributes to the result.
The constants cs and ds for s = 0, 1, 2, 3 are given by

c0 = 1
8 (3ω0 + ω1 − ω2 − 3ω3), d0 = 1

32 (3ω0 + ω1 + ω2 + 3ω3),

c1 = 1
8 (3ω1 + ω2 − ω3 − 3ω0), d1 = 1

32 (3ω1 + ω2 + ω3 + 3ω0),
(56)

c2 = 1
8 (3ω2 + ω3 − ω0 − 3ω1), d2 = 1

32 (3ω2 + ω3 + ω0 + 3ω1),

c3 = 1
8 (3ω3 + ω0 − ω1 − 3ω2), d3 = 1

32 (3ω3 + ω0 + ω1 + 3ω2).

The energy spectrum for the shape invariant potentials in four steps can be algebraically
determined from equations (55) and (17), where 4 replaces k in the latter equation.

4.4. Shape invariance in five steps

Before arriving at the discussion on the shape invariance condition in arbitrary k steps, let
us present one more example, that is k = 5. After this example, we should gather enough
information and will be able to deduce the common algebraic structures that share with all the
translational shape invariant potentials.

The Z5-graded Fock space for the shape invariance in five steps is H = ∑4
s=0 ⊕Hs . The

Fock subspaces are Hs = {∣∣N0 −n− s
5

〉|n = 0, 1, 2, . . .
}
, for s = 0, 1, 2, 3, 4. The projection

operators are given by


0 = 1
5 (1 + 2 cos 2πN + 2 cos 4πN ),


1 = 1
5 (1 − c2 sin 2πN − c4 cos 4πN − s2 sin 2πN + s4 sin 4πN ),


2 = 1
5 (1 − c4 sin 2πN − c2 cos 4πN + s4 sin 2πN + s2 sin 4πN ), (57)


3 = 1
5 (1 − c4 sin 2πN − c2 cos 4πN − s4 sin 2πN − s2 sin 4πN ),


4 = 1
5 (1 − c2 sin 2πN − c4 cos 4πN + s2 sin 2πN − s4 sin 4πN ),

where c2 = 1
2 (1 − √

5), c4 = 1
2 (1 +

√
5), s2 =

√
(5 +

√
5)/2 and s4 = −

√
(5 − √

5)/2.
When the remainder R(α(N )) in equation (40) acts on the first five eigenstates |N0〉,∣∣N0 − 1

5

〉
,
∣∣N0 − 2

5

〉
,
∣∣N0 − 3

5

〉
and

∣∣N0 − 4
5

〉
, the corresponding eigenvalues are Cω0,

(
C + 1

5δ
)
ω1,(

C + 2
5δ

)
ω2,

(
C + 3

5δ
)
ω3 and

(
C + 4

5δ
)
ω4, respectively. Other values can be obtained in the

same way. The structure function for the shape invariant potentials in five steps is determined
by equation (43) as (n = 0, 1, 2, . . .)

F
(

α

(
N0 − 1

5
n

))
= C0 − 1

5
�5

(
C +

1

10
(n − 1)δ

)
n

+
4∑

s=0

((
C +

1

10
(2n − 1)δ

)
cs − δds

)
�s,n. (58)

13
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Similarly, the term satisfying the condition s = n mod 5 survives in the above summation.
The constant C0 is chosen to make the associated structure function positive. The constants cs

and ds for s = 0, 1, 2, 3, 4 are given in the following structural patterns:

c0 = 1
5 (2ω0 + ω1 − ω3 − 2ω4), d0 = 1

50 (4ω0 + ω1 + ω3 + 4ω4),

c1 = 1
5 (2ω1 + ω2 − ω4 − 2ω0), d1 = 1

50 (4ω1 + ω2 + ω4 + 4ω0),

c2 = 1
5 (2ω2 + ω3 − ω0 − 2ω1), d2 = 1

50 (4ω2 + ω3 + ω0 + 4ω1), (59)

c3 = 1
5 (2ω3 + ω4 − ω1 − 2ω2), d3 = 1

50 (4ω3 + ω4 + ω1 + 4ω2),

c4 = 1
5 (2ω4 + ω0 − ω2 − 2ω3), d4 = 1

50 (4ω4 + ω0 + ω2 + 4ω3).

The energy spectrum for the shape invariant potentials in five steps can be algebraically
determined from equations (58) and (17).

4.5. Shape invariance in arbitrary k steps

We are now in a position to deduce the generally algebraic structures for the shape invariant
potentials in arbitrary k steps, based on the systematic properties of the previous four examples
shown above.

The Zk-graded Fock space of the shape invariance in k steps is H = ∑k−1
s=0 ⊕Hs . The

Fock subspaces are denoted by Hs = {∣∣N0 −n− s
k

〉|n = 0, 1, 2, . . .
}
, for s = 0, 1, . . . , k − 1.

The remainder R(α(N )) (40) acts on the eigenstates
∣∣N0 − n

k

〉
rendering this result:(

C + n
k
δ
) ∑k−1

s=0 ωs�s,n. The structure function for the shape invariant potentials in k steps
is again constructed by equation (43) as (n = 0, 1, 2, . . .)

F
(

α

(
N0 − n

k

))
= C0 − �k

k

(
C +

1

2k
(n − 1)δ

)
n

+
k−1∑
s=0

[(
C +

1

2k
(2n − 1)δ

)
cs − δds

]
�s,n. (60)

In the summation, the �s,n term chooses what satisfies the condition s = n mod k. C0 is a
constant to render the associated structure function positive. Moreover, the constants cs and ds

for s = 0, 1, . . . , k−1 are determined based on the structural similarities in the corresponding
counterparts of the previous four examples. After some algebra, the general results of cs and
ds are found to be

cs = 1

2k

k−1∑
t=0

(k − 1 − 2t)ωs+t ,

(61)

ds = 1

2k2

k−1∑
t=0

(t2 − (k − 1)(t − 1))ωs+t ,

where we use the convention ωs+t ≡ ωs+t mod k (e.g. ωk+1 = ω1) in these two general
formulas. An interesting observation is that if we define D(t) = t2 − (k − 1)(t − 1),
then d

dt
D(t) = −(k − 1 − 2t). It is easily checked that the general form in equation (61)

exactly reproduces what we have calculated and presented for the shape invariant potentials in
the lower steps. This general form is even true for the higher-step shape invariant potentials,
for which the detailed results are not shown here.

14



J. Phys. A: Math. Theor. 42 (2009) 385202 W-C Su

5. Conclusions

In the present work, we explore the algebraic properties of the shape invariance condition
in arbitrary k steps, within the framework of SUSYQM. By imposing extra relations of
identification (8) among the k superpotentials and the k remainders, respectively, we obtain
the associated simplified potential algebra of shape invariance in k steps (13). This simplified
version of the potential algebra is found to be similar to that of shape invariance in one
step. Moreover, for translational shape invariance, it is also found to be equivalent to the
generalized deformed oscillator algebra, having a built-in Zk-grading structure. As a result, the
algebraic realization of the shape invariance condition in k steps is formulated by the method of
the Zk-graded generalized deformed oscillator. Based on this method, the representation of the
simplified potential algebra of shape invariance in k steps can be constructed in terms of the
generators of the deformed harmonic oscillator {I,A,A†,N } as well as the grading generator
T of the cyclic group of order k.

For the purpose of illustration, we in addition work out four typical examples of shape
invariant potentials in k = 2, 3, 4 and 5 steps, respectively, in which the parameters a0 and
a1 of partner potentials are related to each other by a1 = a0 + δ. We here assume that the
remainder function depends only linearly on the translational parameter by Rs(am) = σs +amωs

(s = 0, 2, . . . , k − 1) as given in equation (18). In each example, the projection operators

s are explicitly constructed, which project upon the respective Fock subspace Hs of the
Zk-graded Fock space H. The associated structure function F(α(N )) for each example is also
established by directly solving equation (43). Next, by inspecting the algebraic structures for
these four examples, we learn that the constants cs and ds appearing in the structure function
seem to follow some particularly systematic rules. Hence, we continue to explore the shape
invariance condition in arbitrary k steps and by deduction establish the general algebraic
properties for the translational shape invariant potentials. The energy eigenvalues of the initial
Hamiltonian of shape invariance in k steps consequently are determined by purely algebraic
means.

We conclude the paper by pointing out that the results obtained in this work contain the
so-called cyclic shape invariant potentials of period k as a special case. This can be shown
by setting δ = 0 in equation (60); then the resultant structure function is nothing but that
of the harmonic oscillator potential in k steps, in which the remainder R

(
α

(
N0 − n

k

))
(up to

the multiplicative constant C) is arranged as ω0, ω1, ω2, . . ., ωk−1, ω0, . . . . The corresponding
energy spectrum of the k-step shape invariant Hamiltonian (17) is

E(−)
n = C

(
n

k
�k + c0 −

k−1∑
s=0

cs�s,n

)
. (62)

Such a potential has been reported in the study of cyclic shape invariant potentials [13, 18, 19].
Besides this, equation (60) contains two new types of shape invariant potentials in k steps, as
well. If we set δ > 0 in equation (60), the Pöschl–Teller I potential in k steps results, which
possesses an infinite number of bound states. In principle, this potential can be constructed
by generalizing the ordinary shape invariant Pöschl–Teller I potential from one step to k steps.
Similarly, if δ < 0 is chosen in equation (60), we obtain the Pöschl–Teller II potential in
k steps that generalizes the ordinary Pöschl–Teller II potential from shape invariance in one
step to k steps, and contains a finite number of bound states. The analytical properties for the
Pöschl–Teller I & II potentials in k > 1 steps are still unsolved at present, except for the case
of k = 2.
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